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We consider the finite-difference counterpart, i.e., the true lattice analog, of 
Maxwell's equations and equations that govern the propagation of acoustic 
waves in a medium with a periodic dielectric structure. In particular, the vector 
nature of electromagnetic waves is fully taken into account. The existence of true 
gaps for these lattice models is proved for a two-component medium for which 
the dielectric constant is everywhere real and positive, and the dielectric 
constant of the background is essentially larger than the one corresponding to 
the embedded component. 
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I N T R O D U C T I O N  

The p rob l em of the existence of gaps for per iodic  dielectr ic s t ructures  
associa ted  with classical  e lec t romagnet ic  and  acoust ic  waves has received 
cons iderab le  recent  a t tent ion.  (1-1~ One  of the i m p o r t a n t  mot iva t ions  for 
this type of p rob l em is the in t imate  re la t ionship  of this p rob l e m to the 
p r ob l em of the Anderson  loca l iza t ion  of classical waves in a r a n d o m  
medium.  (1"2> The cited papers  indicate  tha t  one can expect  the rise of  the 

gaps  (or  p seudogaps )  in t w o - c o m p o n e n t  dielectr ic  s t ructures  under  cer ta in  
condi t ions  on the b a c k g r o u n d  (host)  and  e m b e d d e d  components .  Namely ,  
the i m p o r t a n t  pa rame te r s  of  the per iod ic  med ium which can shape the 
spec t rum are the vo lume filling fraction,  the dielectr ic  cons tan t  ra t io  eh/ee 
(where eh a n d  e~ are, respectively,  the dielectr ic  cons tan t s  of  the host  
mate r ia l  and  the e m b e d d e d  componen t s ) ,  and  the shape of a toms  of 
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the embedded material as well as their arrangement. In particular, high 
dielectric constant ratio favors the rise of gaps in the spectrum. 

In this paper the embedded component is assumed to consist of 
bounded atoms that do not overlap; therefore, the host material (or back- 
ground) is a geometrically connected set. Such a dielectric medium can be 
rather easily fabricated in experiments (such as air domains in a dielectric 
background) and is quite promising in the context of the existence of a 
photonic gap. (6) Some types of living tissue (due to the cell structure which 
they naturally possess) can be examples of such a medium. (11) We consider 
the case when the host material is optically more dense, i.e., ~h >> ee. For the 
lattice version of Maxwell's equation (which fully takes into account the 
vector nature of electromagnetic waves) and for the medium described 
above we obtain the following results for sufficiently high dielectric 
constant ratio: (i) the spectrum has true gaps; (ii) in the case of acoustic 
waves, the centers of the permitted energy bands can be associated with a 
relevant Neumann-type boundary problem for the atoms of embedded 
material; (iii) the energy of wave modes associated with permitted bands 
of the spectrum resides for the most part in the atoms of the embedded 
component. The second statement shows how the single atom shapes the 
spectrum and, in particular, the gap structure for the medium discussed. 
The third statement indicates the importance of the wave nature of the 
scattering, since, from the geometrical optics point of view, because of the 
full reflection phenomenon, one might expect photons to reside in the more 
dense host material. 

1. C O N S T R U C T I O N  OF LATTICE M O D E L S  

To study the properties of wave propagation in a nonhomogeneous 
medium it is important to investigate the spectral properties of the relevant 
self-adjoint differential operators with coefficients varying in space. These 
operators for electromagnetic and acoustic waves have respectively the 
forms 

A ~ = V i  E~(x) V x ~] ,  ~)(x) ~-~-e-l(x) 

~xj 

In these formulas ~(x) is a complex vector function, 0(x) is a complex 
scalar function, and e(x) stands for the electric permitivity for electro- 
magnetic waves, whereas for acoustic waves e-l(x) stands for the coef- 
ficient of elasticity of the medium. We suppose the coefficient e(x), x e N 3, 
to be a periodic field bounded from above and below by positive constants. 



Periodic Die lectr ic  St ructures  on a Latt ice 573 

In the case of a random field, according to the philosophy of the propaga- 
tion of waves in a random medium (12) (Anderson localization(13/), we may 
expect the rise of localized states, i.e., the rise of the purely point spectrum, 
under some conditions. In particular, as has been pointed out, (~'2'12) the 
problem of the existence of localized states for random media is connected 
with the problem of the existence of gaps in the spectrum for periodic 
media as follows. Suppose e0(x) is a positive periodic field and e(x)= 
eo(X)+el(X), where el(x) is a small random field. If the spectrum of 
the operator associated with periodic eo(X) has gaps, the the operator 
associated with e(x) can develop localized states in those gaps. In par- 
ticular, this mechanism can work for electromagnetic or acoustic waves. ~ 
Thus it is important to know whether there are gaps in the relevant spec- 
trum. In spite of a similarity between the second-order operators A and F 
on one hand and the Schr6dinger operator on other, there is an important 
difference that makes it difficult to construct a disordered medium which 
can have localized states. In particular, the difference is that for operators 
A and F the bottom of the spectrum does not depend on the coefficient 
~(x) at all and equals zero, whereas for the Schr6dinger operator it depends 
on the potential and this is why localized states might appear in a vicinity 
of the bottom of the spectrum. That is, in order to apply the above 
philosophy we have to construct first a medium (for instance, a periodic 
one) possessing a true gap in the spectrum. ~ In this paper we prove the 
existence of gaps for the lattice analogs of the operators A and F which are 
constructed below. 

We begin with a construction of the discrete analogs of the operators 
A and F keeping the same notation for them. We construct the lattice 
version of the operators of interest in a way similar to the Anderson tight- 
binding model, (13) replacing the differential operators by their finite- 
difference counterparts. Namely, we introduce discrete analogs of the 
partial derivatives c~j and V as follows. Let Vj, 1 ~< j ~< d (d is the dimension 
of the space, i.e., 3 in many interesting cases), be the unitary shift operators 
acting on Hilbert space 12(Z d) or lg(Z a) [ that  is, the direct sum of n copies 
of/2(Za), where n stands for the dimension of the vectors; n equals 3 for 
electromagnetic waves and 1 for acoustic waves]. If ej, 1 <~j<~d, are the 
standard basis vectors in lattice Z a and I is the identity operator, then Vj 
and t?j are defined by 

(Vj~)(rn)= ~(Sj(m)), Sj(m)=m-ej, m~7/a 
(1.1) 

•j=I--Vj, l<~j<~d 

That is, Sj stands for the shift in lattice ya  by the vector ej. The discrete 
analog of V we define by substituting the partial derivatives by their 
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counterparts Oj from (1.1). We can incorporate both the electromagnetic 
and acoustic cases as follows. 

Let us first introduce operators on the lattice which are the analogs of 
differential operators. We denote by fm, r, m~77d, 1 ~< r<~n, the standard 
orthonormal basis in l~(7/a), i.e., (fm, r)(k, q)=~m,k~r.q, m, k~77 a, 1 <<.r, 
q ~< n, where 6 is the Kronecker delta symbol. In view of (1.1) we obviously 
have 

V]-~fm, r=fm_~,r, m e Z  d, l<~r~n, l<~j<~d 

(Vj-tgt)(m,r)=gt(rn+ej, r), m e Z  d, l<~r<~n, l<~j<~d 

Def in i t ion .  Let us call a linear operator D acting in the Hilbert space 
l~(2 d) a &operator if for some complex constants  dr, q;j, 1 ~r, q<~n, 
1 ~ j  ~< d, the following representation is valid: 

d 

(Dgt)(rn, r )=  ~ Z d,,q;J(aJgt)( m, q) (1.2) 
q = l  j = l  

where 3j are defined by (1.1), that is, (OiVg)(m, q)= 9g(m, q ) -  T ( m - e j ,  q), 
m e g  d. 

In particular, it is obvious that discrete Oj are &operators, and the 
discrete curl operator V •  is a c%operator as well for d = n =  3 and 
matrices {dr, q;j} defined by 

{dr, q ; 1 } =  0 -  , {dr, q;2} ~- 0 0 

1 - 1  0 

{d,,q;3 } = 0 

0 

(1.3) 

We next define quadratic forms that will be associated with the desired 
self-adjoint operators. Namely if D~, 1 ~<l<~N, are &operators in /g(7/d), 
then 

N 

Q(gt, ~ ) =  ~ 7 ( m ) ~  I(D,~)m[ 2 
rn~Z d l-- 1 

We associate with this form Q the self-adjoint operator 

N 

A = E D*TD' 
l--1 
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In particular, 

A = A  if N = I ,  d = n = 3 ,  D I ( . ) = V x ( . )  (1.4) 

A = F  if N = d ,  n = l ,  Dt=c~,  l<~l<~d (1.5) 

Two-Component Medium 

To establish accurate results we must specify the medium, i.e., the 
function e(m), m~Y_ d. We consider a two-component medium, that is, a 
medium for which the function e takes on just two values, 1 and ~ > 1. In 
fact, we will be especially interested in ~ >2> 1. Thus, one may think of the 
two-component medium as a set of connected domains (atoms) where e = 1 
which are embedded into a medium with higher e = 4. Now consider the set 
d of the sites of the lattice where e takes on the value 1, and set 

= Y_d/d, where e takes on the value ~, i.e., 

{1 if m ~ d  (1.6) 
? ( m ) = e  l (m)=  -1 if m ~  

D e f i n i t i o n .  We say that two sites m and m' are neighboring if there 
i s j ~  {1 ..... d} such that m - m ' =  +e; .  A subset sr of the lattice is called 
connected if for any two elements x and y there is a finite sequence xl ,..., x~ 
such that X q e d ,  l~q<<.l, x l = x ,  x t = y ,  and each pair of elements 
Xq, xq + 1, 1 ~< q ~< l -  1, are neighboring. 

We can decompose the set d into the union of its connected 
components d~, namely 

~4 = U d~ , d~ n d~ = 5~3 if ~ r  (1.7) 
~ Z  

where Z is a set of indexes (it might be the set of natural numbers or, for 
instance, the lattice Y ,  if we want to build a periodic structure): For  the 
sake of simplicity in the spectral analysis of the operators associated with 
the sets d~, we pose some constraints on these sets. 

Assumption C. All connected subsets d= in the decomposition 
(1.7) are finite and for any two different d~ and dp if x ~ d ~  andyeWe,  
then x and y are not neighboring or equal and there is no site z 
neighboring both x and y. 

Assumption C means that the connected components ~'= cannot be 
too close to each other. Let us consider a simple but important example 

822/73/3-4-8 
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when the subsets ~r are parallelepipeds. Namely, let p~ ..... Pd be natural 
integers and 

. . .  •  ..... p -l} 

= U = ..... 
c t ~ Z  d 

~r = ~r + (cq rl ..... Ctdrd), rj>~pj+2, l<<.j<~d 

In this case the sets d~ are obviously connected and, because of the 
inequalities for r~, it is not difficult to verify that they satisfy Assumption C. 

Now if Dz, l~<l<~N, are 0-operators, then we have the following 
quadratic form associated with the function ~ defined by (1.6): 

Q(7*, ~ttt)= ~-IQ~(~ rt, t/t)+ E Qd~(~, ~) (1.8) 
c r  

N 

Q~(~P, ~ ) =  ~ ~ ](O,7*)ml 2, g ~ 7 / d  (1.9) 
m ~  l = l  

That is, the quadratic forms Q o~,~ are associated with the portion of the 
lattice where e is 1, whereas Q~- is associated with the rest of the lattice 
where e equals 4. The self-adjoint operator associated with the quadratic 
form (1.8) is 

N 
9~ = ~ D*TDt, where e is defined by (1.6) (1.10) 

l = 1  

2. S T A T E M E N T  OF RESULTS 

We suppose here that the operator 9I is defined by (1.10), where DI 
are 0-operators defined by (1.2). Since we are interested in the operators 
for large 4, let us first consider the operator 9.1 (o) = 9.11 r = ~o- This self-adjoint 
operator is associated with the second sum in (1.8) and can be represented 
as follows: 

~(o) = ~ = ~ 9.1d ~ 
o c E Z  

where for any ~ c 2U 

N 

~ = ~ D*z~D,, ga(m) = 
l = l  

(2.1) 

if m ~  
(2.2) 

if m ~  
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Now we have the following representation for the operator q.l: 

9 . 1 = ~ - 1 9 . 1 ~ + ~ 1 ~ = ~ - 1 ~ + 9 ~ ( ~  ~' ~ j ~  (2.3) 

First of all we notice that all operators 9.I, 9.1 (~ and 9.1e are obviously 
nonnegative and zero belongs to their spectra, i.e., if a(g) stands for the 
spectrum of the operator g, then 

o-(9.1), a(9~~ a ( 9 ~ )  ~ 0 (2.4) 

Theorem 1 (Spectrum for ~ = ~) .  Suppose that Assumption C is 
satisfied. Then 9.I~ 9.1~,~ = 0 if e r fl and therefore the sum of operators in 
(2.1) is direct, and 

a(9.1m))= ~) o-(9.1~,) (2.5) 
~ E Z  

If in addition the sets sJ~ form a periodic structure, that is, there is a vector 
r = (r 1,..., ra) s Z d with positive components (big enough to satisfy Assump- 
tion C), such that sr = Sr (cqrl ..... card) where sr is a nonempty finite 
set, then 

a(~[ ~~ = o-(9.I ~,0) (2.6) 

where o-(9.i~,0) is a finite set containing at least two distinct points one of 
which is 0. 

Thus Theorem 1 states that the spectrum of operator 9.I ~~ is a discrete 
set. In particular, the spectrum is a finite set in the case of a periodic 
medium (in this case, of course, the eigenvalues have an infinite multi- 
plicity). Let us suppose for a moment that the medium is periodic and 
therefore the operator 9.1 has only an absolutely continuous spectrum 
which is a set of intervals in the real axis. In this case if ( is large eneough, 
the operator ~i, being a small perturbation of the operator 9A m), must have 
gaps in the spectrum, since the spectrum o-(9.1) has to be in the vicinity of 
the appropriate finite set a(gA ~o). Let us define accurately what we mean by 
a gap in the spectrum. 

D e f i n i t i o n  (Gap). We say that a self-adjoint operator A has a gap 
in its spectrum if there are finite real numbers 21<22 such that 
21,22 ~ a(A), (21,22) c~ a(A) = ~ .  That is, there are points of the spectrum 
to the right and to the left of the gap. 
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T h e o r e m  2 (Existence of gaps). Suppose that Assumption C is 
satisfied and the medium is periodic as defined in the statement of 
Theorem 1. Then if ~ is large enough, the spectrum of the operator 92 has 
gaps and moreover it is located in the vicinity of the finite set a(92~0 ). 
Specifically, the spectrum of the operator 92 has a gap if the following 
inequality is satisfied: 

N d 

~21(92~0)>8d ~ ~ H{dy)}ll 2 (2.7) 
/ = 1  j = l  

where 21(92~,0) is the smallest positive eigenvalue associated with the 
matrix 92g0. In particular, if do = {0 ..... P l -  1} x .. .  x {0 ..... Pd-- 1} is a 
parallelepiped, then in the cases of the operators A and F the following 
inequalities guarantee the existence of a gap in the spectrum 

A: ~21(A~,0) > 48 (2.8) 

F: ~ > 8 d ( d + l ) s i n  -2 n - -  max pj (2.9) P(~O)' P(~O)=l<~J <~d 

By the way, the last inequality is obtained on the base of a sort of 
Neumann boundary problem. More generally, we first notice that 
(~ ,92~Vt )=Q~(~ ,  ~), where the quadratic form Q~ defined by (1.9). 
Then, in view of this representation and the fact that Q~ is defined for all 
~u in the Hilbert space, we may think of the operator 92~ as an operator 
associated with a sort of Neumann boundary problem (see also Lemma 2 
and comments in its proof). 

Remark. For the considered lattice models of periodic dielectric 
structures we can list the following factors that shape the spectrum and, 
in particular, gaps: (i) the connectedness of the host component and the 
atomic structure of the embedded component (the filling fraction of the 
embedded material might have an impact on the smallest dielectric 
constant ratio under which a gap in the spectrum rises); (ii) the atoms of 
the embedded material shape the band structure of the spectrum. 

3. PROOF OF RESULTS 

We suppose here that Assumption C is satisfied. For ~ ___ 77 d, let H a  
be the Hilbert subspace of l~(7/d) made up of vectors ~ such that ~(m) = 0 
if m ~ ~.  In addition, for any g ___ Z d we introduce its extension 

d 

~ ' = ~  U SjM (3.1) 
j - -1 



Per iod ic  D ie lec t r ic  S t r u c t u r e s  on a Lat t ice  579 

where the shift operators S; are defined in (1.1). In other words, the set N'  
can be obtained from ~ by joining to it a part of the neighboring sites of 
the lattice. 

Lemma 1. The following statements are true 

(i) For  any ~ Z _ a :  H ~ ~ 4  4' = O, 9.I~H 4, ~- H 4, 
(ii) d ;  c~ d }  = ~ and 9.1d oA~r if ~ r and therefore the sum 

of operators in (2.1) is direct. 
(iii) If r is a finite and connected subset of the lattice, then there is 

an eigenvector ~, namely g~(m) - 1, rn e ~ ,  such that 9.14 gt = 0. If 9.1 = F, 
then 7 t is only an eigenvector such that F4  h u = 0. If N is an infinite and 
connected subset of the lattice, then F 4 gt = 0 implies ~g= 0. 

(iv) Operators 9.1, 9.1 (~ and 9A~ (for a finite and connected M) are 
nonnegative and their spectra contain 0, that is, (2.4) is true. 

Proof .  Suppose that x ~ N " ' ,  where for a set d ,  d c is its comple- 
mentary set. Since obviously H A, = H~,c, then in order to verify the first 
statement in (i) it is sufficient to check that ~14fx=0 .  Now, we notice that 
it follows from (1.2) that Dfx is a linear combination of the vector re,  
y e  {x+e ; ,  j =  1,..., d}. By the assumption made, x~N".  Therefore 
y = x + e j ( s ~ , j =  1 ..... d, and z 4 f x = 0 .  That is, we have z ~ D f x = O .  From 
this and (t.10) we obtain od4f~=0 ,  which proves the first relationship 
in (i). The second relationship follows straightforwardly from first since ~I~ 
is obviously a self-adjoint operator. 

Suppose now for a moment that there are e and/~ such that c~ r and 
d'~ c~ d '  B r ;g. Then from this we have to conclude that either there is j 
(or k) such that x + e ; = y  (or x = y + e k )  or there is a z such that 
z = x + ej = y + ek, where x e d~ and y e d~ for some j and k. But all these 
contradict Assumption C. Hence the first relationship in (ii) is true. The 
second relationship follows easily from the first one and the statement (i). 

The statement (iii) follows immediately from (1.9) and (2.2). The state- 
ment (iv) for 9.14 (for a finite and connected N') obviously follows from the 
statement (iii). The statement (iv) for 9.1 (~ in turn follows from this state- 
ment for 9.14. As far as the operator 9.1 is concerned, we can easily show 
that there is a sequence of vectors g t .  n = 1, 2 ..... such that II ~.ll = 1 and 
l im,~ ~ IIgA~uAI = 0. Namely, let us set gJ~(m)= (2n) -d/2 if m = (ml ,..., ma), 

Im;[ ~< n, 1 ~<j~< d, and gt,,(m) = 0 otherwise. Straightforward computation 
shows that I I~- l~l l  goes to zero as n approaches infinity at the rate n -~. 
This completes the proof of the lemma. | 

P r o o f  o f  Theorem 1. The validity of the direct sum decomposition 
(2.1) for the operator 9.i (~ follows immediately from Lemma l(ii). The 
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relationship (2.5) obviously follows from (2.1). As far as representation 
(2.6) is concerned, due to the supposed periodicity we obviously have 

~[da : v-~r~do v~r, var: V~ lrt "'" Vad drd' O'(~ ~ar : O'(~[do) 

This relationships and (2.5) imply the validity of (2.6), which completes the 
proof of the theorem, l 

Considcring the gaps in the spectrum of the operators 2[, we will 
especially be interested in the first (or the lowest) gap. So, since in view of 
Lemma i, the operators 9A~ are positive and their spectra contain 0, it 
would be useful to evaluate the first positive eigenvalue of 9A~, denoted by 
2, (9~). 

L e m m a  2. Suppose that ~ I = F .  If N is a paralMepiped on the 
lattice (i.e., ~ -- {0 ..... Pl - 1 } x . . .  x {0,..., P d -  1 }, where &, 1 ~<j~< d, are 
natural numbers) and p(~)=maxi~j<~a&, then the following estimation 
is true: 

d 7r 
2,(F~)  >~ 2~ = sin 2 - -  (3.2) 

d+ 1 p(~) 

We may think of the matrix F e as the one associated with a sort of 
Neumann boundary problem by the following reasons. First, in view of 
Lemma l(iii), (iv), F~ is nonnegative and has a unique vector ~ ( m ) -  1 
such that F e  g t=  0. Second, the estimation (3.2) for the first nonnegative 
eigenvalue 2~(F~) up to a factor is the same as for the relevant eigenvalue 
of a matrix ~3e (constructed below) that can be associated Neumann 
boundary conditions. 

To prove this lemma we need first to prove some auxiliary statements. 
Let N be a paralMepiped and let ~3~ be the quadratic form defined by 

~3e(0, 0) = ~ 1O(m) - O(k)l x (3.3) 
(m,k)e~ 

where ~ is the set of all neighboring pairs (re, k )  in ~ .  If Be is a 
symmetric matrix associated with the form 9.1 e then it is easy to see that 
its entries Be(m, k) are equal to 

B~(m,k)= if (m,k)eN'  
otherwise 

where v(k) is the number of sites of the lattice in ~ neighboring site k. 
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By the way, one can easily verify that matrix B~ can be obtained from 
the following Neumann boundary problem. Let b be a point on the bound- 
ary 0~  of the parallelepiped ~ and ~ = {b': b'r r b' is neighboring b}. 
Thus matrix B~ can be obtained from matrix F provided by the following 
boundary conditions: 

0(b)  - O(b') = o, b e o r  b ' s  

Now if we define the set of vectors e, as 

d 

e,(k) = 1-[ cos[~z(2kj + 1) {jp[1],  t =  (t~,..., td), 
j = l  

k = (k~ ..... ka) e ~' 

then we can verify straightforwardly that they form a set of eigenvectors 
and 

d 

Bee,=2 ~ [1--cos(2mjpj-1)]  e,, t e ~  (3.4) 
j = l  

Lemma 3. Let ~ e  be a quadratic form defined by (3.3) for a 
parallelepiped N and p ( N ) = m a x l z j ~ a p  j. Then if 2~(~3e) is a minimal 
positive eigenvalue of ~.e, the following estimation is true: 

Tg 
2 , (~e )  >~ 2 sin 2 p (~)  (3.5) 

Proof. The inequality follows straightforwardly from (3.4). | 

Proof o f /emma 2. Let us notice that for a parallelepiped ~ intro- 
duced above, the set r defined by (3.1) can be decomposed as follows: 

where 

~ =  {(k,,..., k j )~  2~d: k j=  - 1; O~kq<.pq- 1, 1 <~q<~d, q# j} ,  

~ = ( 2 5 ,  ~ C ~ q = ~ ,  l <~j,q<.d, j # q  

l <<.j<~d 

From this (2.2) and (3.3) we have 

d 

Q ~ ( 0 , ~ ) = ( O , F ~ 0 ) = ~ 3 ~ ( 0 , 0 ) +  ~ ~ 1 0 ( / ) - 0 ( / + e j ) l =  (3.6) 
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Since ~(m) -- 1, m ~ ~ ,  is obviously the only vector on which the forms ~3~ 
and Q~ take on zero value [-see Lemma t(iii) and (3.3)], then in order to 
prove the lemma, it is sufficient to show that for any ~/ector ~(m), m ~ ~ ,  
the following inequality is true: 

Q~(~O,~)~>,~ ~ ]~(m)-~O~,l 2, O~,=N(Y) -~ ~ ~(m) (3.7) 
m ~ '  m ~ '  

where N ( ~ ' ) =  (p~ + 1) . . .  (Pa+ 1 ) - 1  is the number of sites in the set ~ ' .  
In view of the remark above concerning the uniqueness of the vector on 
which the form ~3~ equals zero and (3.5), we have 

~(0,~9)>~21(~)  ~ l~9(m)-tP~[ 2, 0~=N(~)  -~ ~ 0(m) (3.8) 
m ~  r n e , ~  

where N ( ~ )  = p~ --"Pd is the number of sites in the parallelepiped ~.  Hence 
from (3.6) and (3.8) we obtain 

d 

( r  ~ Iq~(m)12+ Y'. ~ 1~o(l)-~9(l+ej)l 2, ~=.~1(~3r (3.9) 
m ~ @  j = l  l ~  ~.~ j 

where 

~0(m) = ~p(m) - ~b~, q = 21(~3~) (3.10) 

In order to estimate the right side of the last inequality we will need the 
following elementary inequality: 

alxl2+blx-yl2>{2Ua-l+(2b)-l]}- l(Ixl2+lYl)  2 (3.11) 

which is true for any positive a, b and complex x and y. Now we notice 
that the indices l+ej in the second sum in (3.9) belong to ~'. Besides, the 
"left" boundary elements b from N (i.e., such b E ~ that for a j e { 1,..., d }: 
Sjb r ~) can be represented in the form b = l +  ej, l e ~ ,  in several ways 
(for different j), but obviously not greater than in d ways. Now if we 
separate the summands from the first sum in (3.9) associated with the 
mentioned boundary elements b and join them to the second sum in (3.9) 
and then apply the inequality (3.11), a = ~/d -1, b = 1 (taking in account the 
remark on the maximum number of possible representation of b), then we 
get the following estimate 

(~b, Fz,~)>>,dq(2d+q) 1 ~ ]r 2 (3.12) 
m ~ , ~ '  
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Let us notice that 

min ~ I O ( m ) - t t 2 =  ~ IO(m)-O~, l  2 (3.13) 
t ~ C  m ~ ~j,, m ~ ,~" 

Now from (3.10), (3.5), (3.12), and (3.13) we can conclude that (3.7) is true 
and therefore (3.2) is true, which completes the proof of Lemma 2. | 

Having in mind the representation (2.3), we need to evaluate the 
following norms. 

Lemma 4. Let operators @ D, A, and F be defined correspondingly 
by (1.l), (1.2), (1.4), and (1.5), where 7 -  1. Then the following estimations 
of their norm are true: 

d ) 1/'2 

JI0j/I ~<2, [[DJl ~<2 d ~ ll{dj}[I 2 
j = l  

where II{d}j]l is the norm of the matrix {d.,q;j}, 1 <~j<<.d, 

(3.14) 

IIAII 424,  I l r l l  ~<4d (3.15) 

Proof. The first inequality in (3.14) follows straightforwardly from 
(1.1). To prove the second one we note that 

](D~)(m,r)[ 2= ~ ~ ~ dr.q;j(~j~)(m, q) 2 
r = l  r = l  q = l  j = l  

d 2 

Z {4}( ~ v,)( ) -= Oj m 

j 1 

~< II{dj}ll 2 Z !l(~J~U)(m)ll 2 
. =  j 1 j 1 

Summing up both sides of the last inequality over m e 7/a and using the 
inequality (3.14) for Oj, we easily obtain 

IID~/'H2~< IF{dj}]l 2 I](0j~u)]]2~< 4d Z ]l{dJ}H 2 ]]~tl 2 
] 1 j = l  1 �9 J = 

For the operator A [see (1.3) and (1.4)] we have N =  1, n=d=3, and 
II {dj} [] = 1, i.e., llA Ii ~< [IDZll ~< 24. For the operator F we have, respectively, 
N=d, n =  1, d j=  1 [see (1.5)], i.e., IFFjl ~<4d. This completes the proof of 
the inequalities (3.15) and the lemma. | 
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We will also need the following general statement concerning the 
existence of a gap in the spectrum of an operator. 

Lemma 5. Suppose that a self-ajoint operator A has a gap of length 
not less than L, i.e., there are 21 and 22 such that 21,22co-(A), 
(21, 22)n  a(A)= ~ ,  and 22 ~>L+ 21. Then if B is a self-adjoint operator 
such that IIBII <L/2, then A + B  has a gap (of positive length) in the 
spectrum. 

Proof. Let 2 = (21 + 22)/2. Then according to the conditions of the 
lemma we have t1(A-2)-111 <~2/L. From this and IIBlt <L/2 we easily 
obtain that the operator (A + B - - 2 ) - 1  is a bounded operator, i.e., 2 is not 
in the spectrum of A + B. On the hand, we can show that a(A + B)c~ 
(2z-L~2, 2 2 + L / 2 ) # ~ .  Indeed, assume that this is not true. Then 
representing A as (A + B ) - B  and reasoning as before, we come up with 
the statement that 22Ca(A) which contradicts the assumptions of the 
lemma. That is, there is a ]A 2 such that 2 < #2 and /A 2 ~ a(A + B). In same 
fashion we can find a ~tl such that #1 < 2  and #1 e o-(A +B).  Therefore 
A + B has at least one gap and 2 is inside of it. The lemma is proved. | 

Proof of Theorem 2. The statement of the theorem follows from 
Lemma 5 (where A = 91 (~ and B = ~-101~) and the estimates of Lemmas 2 
and 4. | 
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